On the Combinatorial Aspects of Max–Algebra
نویسنده
چکیده
Let a ⊕ b = max(a, b), a ⊗ b = a + b for a, b ∈ R := R ∪ {−∞}. By max-algebra we understand the analogue of linear algebra developed for the pair of operations (⊕,⊗) extended to matrices and vectors. Max-algebra, which has been studied for more than 40 years, is an attractive way of describing a class of nonlinear problems appearing for instance in machine-scheduling, information technology and discrete-event dynamic systems. This paper focuses on presenting a number of links between basic max-algebraic problems like systems of linear equations, eigenvalue-eigenvector problem, linear independence, regularity and characteristic polynomial on one hand and combinatorial or combinatorial optimization problems on the other hand. This indicates that max-algebra may be regarded as a linear-algebraic encoding of a class of combinatorial problems. The paper is intended for wider readership including researchers not familiar with max-algebra.
منابع مشابه
Max-Plus algebra on tensors and its properties
In this paper we generalize the max plus algebra system of real matrices to the class of real tensors and derive its fundamental properties. Also we give some basic properties for the left (right) inverse, under the new system. The existence of order 2 left (right) inverses of tensors is characterized.
متن کاملOn Some Properties of the Max Algebra System Over Tensors
Recently we generalized the max algebra system to the class of nonnegative tensors. In this paper we give some basic properties for the left (right) inverse, under the new system. The existence of order 2 left (right) inverse of tensors is characterized. Also we generalize the direct product of matrices to the direct product of tensors (of the same order, but may be different dimensions) and i...
متن کاملMax-algebra: the linear algebra of combinatorics?
Let a ⊕ b = max(a, b), a ⊗ b = a + b for a, b ∈ R := R ∪ {−∞}. By max-algebra we understand the analogue of linear algebra developed for the pair of operations (⊕,⊗) extended to matrices and vectors. Max-algebra, which has been studied for more than 40 years, is an attractive way of describing a class of nonlinear problems appearing for instance in machinescheduling, information technology and ...
متن کاملSOME HYPER K-ALGEBRAIC STRUCTURES INDUCED BY MAX-MIN GENERAL FUZZY AUTOMATA
We present some connections between the max-min general fuzzy automaton theory and the hyper structure theory. First, we introduce a hyper BCK-algebra induced by a max-min general fuzzy automaton. Then, we study the properties of this hyper BCK-algebra. Particularly, some theorems and results for hyper BCK-algebra are proved. For example, it is shown that this structure consists of different ty...
متن کاملOn Max-injective modules
$R$-module. In this paper, we explore more properties of $Max$-injective modules and we study some conditions under which the maximal spectrum of $M$ is a $Max$-spectral space for its Zariski topology.
متن کامل